巴黎萨克雷大学(Université Paris-Saclay)的研究团队发表了他们把微流控与飞行时间质谱结合的技术。与现有技术相比,其把飞行时间质谱进行多肽测试时的灵敏度提升了30倍。
大多数生物标志物在生物体液中的含量非常少,这就需要采用富集手段。传统的蒸发手段会带来沉积物内的均匀性缺陷和从一个沉积物到另一个沉积物的重现性问题。
DMF-MALDI Set-up: droplet creation and spotting. Top: droplet generation (left), droplet spacing (right) within the PDMS microfluidic chip. Bottom: before deposition (left), during deposition (middle), after deposition (right) on stainless steel MALDI plate.
Université Paris-Saclay的研究人员利用微流体技术使得在这两点上取得进展成为可能。其原理是生产一系列“microdrops”,通过在填充有油的T形微通道的入口处引入一滴分析物来校准。这些微滴作为油-水乳液被输送到干燥点。聚焦在微滴上的紫外激光器使冷凝物蒸发并电离,然后通过飞行时间质谱仪进行分析。
MALDI-TOF MS spectra of 5 femtomoles of Ang II. Left. Standard pipette deposition. Right. DMF deposition.Inserts: Dried mixture of peptide/matrix before laser desorption.
该技术被称作DMF-MALDI(Droplet Microfluidic MALDI),将数字微流控芯片与MALDI-TOF连接起来。应用于肽的分析,这种方法大大提高了检测灵敏度,允许分析亚纳摩尔初始浓度的溶液。
LB6411中子剂量率探测器德国伯托BERTHOLD
LB6500-4-H10剂量率探头德国伯托BERTHOLD
LB761低本底放射性测量仪德国伯托BERTHOLD
LB134剂量率监测器德国伯托BERTHOLD
LB2046便携式αβ测量仪德国伯托BERTHOLD
LB761低本底放射性测量仪德国伯托BERTHOLD
LB790低本底放射性测量仪德国伯托BERTHOLD
LB1343污染测量仪德国伯托BERTHOLD
LB147手脚衣物污染监测仪德国伯托BERTHOLD
LB124SCINT便携式污染测量仪德国伯托BERTHOLD